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ABSTRACT
In recent years, it has become important for researchers, se-
curity incident responders and educators to share network
logs, and many log anonymization tools and techniques have
been put forth to sanitize this sensitive data source in or-
der to enable more collaboration. Unfortunately, many new
attacks have been created, in parallel, that try to exploit
weaknesses in the anonymization process. In this paper, we
present a taxonomy that relates similar kinds of attacks in
a meaningful way. We also present a new adversarial model
which we can map into the taxonomy by the types of attacks
that can be perpetrated by a particular adversary. This has
helped us to negotiate the trade-offs between data utility
and trust, by giving us a way to specify the strength of an
anonymization scheme as a measure of the types of adver-
saries it protects against.

Categories and Subject Descriptors
C.2.3 [Network Operations]: [Network Monitoring]; K.4.1
[Public Policy Issues]: [Privacy]; K.4.3 [Organizational
Impacts]: [Computer-supported collaborative work]; K.6.m
[Miscellaneous]: [Security]

General Terms
Security, Verification

Keywords
Adversarial Model, Anonymization, Network Logs, Taxon-
omy

1. INTRODUCTION
As many have argued, sharing of network traces, flow data

and other logs is vitally important to research, industry and
pedagogy [22, 16, 14]. The network and security research
communities rely on large, diverse and non-synthetic [12]
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data sets for empirical studies. Incident responders need
to share real logs to collaborate on investigations of attacks
that cross organizational boundaries. Educators and those
creating educational materials need example data for stu-
dent projects and exercises.

However, it has frequently been pointed out that these
sorts of data are often very sensitive [22, 18, 23, 17]. There
are security concerns about what information may be re-
vealed regarding the data collector’s network and systems,
and there are legal questions about betraying the trust of
the users whose private actions are being recorded [19].

Anonymization techniques have been developed to allevi-
ate this conflict created by the need for security and trust on
the one hand and high utility data sets on the other [14, 23,
25, 26, 13]. In fact, several tools have been created so that
data owners can sanitize network data [20, 15, 9, 21]. While
very useful, these tools alone do not solve the entire prob-
lem. One must know how to create anonymization policies
that provide the necessary level of assurance—especially in
lieu of many recently developed attacks against anonymiza-
tion [8, 4, 5, 18]. These tools alone do nothing if one does
not know how to use them intelligently.

As a corollary to this trade-off between information loss
and trust, there are always at least two actors with oppos-
ing interests in the creation of an anonymization policy. The
data owner and the people whose behavior the data describes
want policies to protect their privacy and security interests.
Even if the data does not directly reveal sensitive informa-
tion about the data owner’s network or services, Internet
service providers and such do not want to violate the con-
sumer’s trust or their own privacy policies. On the other
hand, the person(s) doing analysis of the data—whether it
is a researcher or someone investigating a specific intrusion—
needs data as close to the original as possible. Alterations
can affect analysis, and they want these minimized. There-
fore one party wants more anonymization of the data and
the other wants less.

Balancing these two different needs requires the ability
to specify constraints on which fields must and must not
be anonymized, and with what algorithms such fields may
be anonymized. In other work [6], we have developed a
first order predicate logic in which these constraints may be
specified to generate anonymization policies or test them for
compliance. However, one must still come up with mecha-
nisms to create intelligent constraints. In [10], we investi-
gated the needs of the party performing the analysis so that
they could specify minimal constraints on what can not be
anonymized—trying to measure the utility of anonymized



data. This work, instead, focuses on how one can specify
minimal constraints on what must be anonymized to meet
the minimum assurance level of the data owner.

A natural way to express one’s security or trust require-
ments is in terms of the types of attacks or the type of
adversary they must withstand. With this in mind, we
have created a taxonomy of the attacks against network log
anonymization based upon common attack preconditions.
We have created a more thorough and mutually exclusive
taxonomy than previous attempts which not only reflects
all currently known attacks, but we believe it will be able
to incorporate future attacks. Furthermore, since it is based
upon attack preconditions, namely what information is nec-
essary for the adversary to perform the attack, it readily
translates into constraints for our predicate logic. There-
fore, constraints can be easily derived to prevent a single
attack, a class of attacks, or arbitrary collections of attacks
through simple logical conjunctions of these statements.

The other natural way to express a level of assurance is to
specify the type of adversary that must be protected against.
Therefore, our second contribution in this paper is the de-
velopment of an adversarial model based upon adversarial
means and capabilities. Lastly, we tie together the adversar-
ial model and attack taxonomy so one can translate between
constraints based upon either adversaries or the classes of
attacks which they can perpetrate.

This paper is organized as follows: Section 2 presents our
taxonomy of attacks. Section 3 introduces the basics of our
adversarial model, including the notation we have developed
to express the model. Section 4 establishes our mapping be-
tween the taxonomy and adversarial model. Section 5 dis-
cusses related work, and section 6 presents future work and
our conclusions.

2. ATTACK TAXONOMY
Classifying attacks against log anonymization is an early

step towards a comprehensive study of the security of anony-
mization policies. If network owners can select classes of at-
tacks that they wish to prevent, they can then ensure that
their anonymization policies meet their security constraints,
while allowing as much non-private information as possible
to be revealed—thus increasing a data set’s utility.

2.1 Motivations and Requirements
As described previously, we wish to provide network own-

ers with a taxonomy of attacks, the classes of which they can
select to prevent, rather than having to focus on individual
attacks. We also wish to formally express relationships be-
tween attacks, allowing for expression of attack groupings
in a logic about anonymization. This taxonomy must be
complete (every known attack can be placed in at least one
class) and mutually exclusive (no attack can be a member
of more than one class). The classes must be fine-grained
enough for network owners to select specific classes without
seriously impacting the utility of a log. Finally, the classes
must be tied together in a more concrete way than a de-
scription in natural language.

2.2 Methodology
Nineteen attacks from multiple sources [23, 15, 11, 2, 14,

4, 22, 7, 5, 24] were collected as representative of current
attacks against log anonymization. These attacks varied sig-
nificantly in both sophistication and mechanisms used. The

attacks included all the attacks specifically mentioned both
by Pang and Paxson [15] and by Slagell et al. [22], and so
the attack sample is a strict superset of those considered for
those previous taxonomies discussed in Section 5.

Each attack was analyzed for its pre-conditions. We chose
to organize around pre-conditions because they capture the
initial knowledge of the adversary and properties of the
anonymized log. Every anonymization attack requires some
initial knowledge and some specific log properties. By orga-
nizing around pre-conditions, we can identify the knowledge
and log properties that are crucial to the execution of an
anti-anonymization attack. Section 3 will demonstrate how
we can take this initial knowledge and log properties into
account when modeling an adversary and when determining
whether a given adversary can carry out a particular attack.

A graph was constructed, with nodes for each attack under
consideration, as well as for pre-conditions for each attack.
In cases where two or more nodes shared a common pre-
condition, that condition was represented with a single node.
Edges were added to the graph connecting pre-conditions to
the attacks they enabled. Attempts were then made to sat-
isfactorily group attacks with common pre-conditions.

2.3 Results
The full graph using pre-conditions is illustrated in Fig-

ure 1. We note that a large number of the attacks (9 of 19)
require some form of consistent IP pseudonyms in order to
identify individual machines in the log, and an additional at-
tack specifically requires prefix-preserving pseudonyms [23].
Because this pre-condition does not help us distinguish many
attacks, we ignore it when generating our taxonomy. Given
this, we now have six unconnected subgraphs that can be
treated as classes in our taxonomy. Two of these subgraphs
each involve a single attack/pre-condition pair, and as both
of these attacks essentially involve potential cryptographic
weaknesses in the anonymization functions themselves, we
group them together into a single class.

Remarkably, this analysis reveals a high-level taxonomy
virtually identical to those given by Slagell et al [22]. Sev-
eral of these classes share no common pre-conditions, and
the only pre-condition shared between classes is a consistent
IP mapping (such as a prefix-preserving mapping [23]) that
enables identification of individual machines in the log. The
major classes in our taxonomy, separated in Figure 1 with
black, dashed lines, are as follows:

• Fingerprinting: The process of matching attributes of
an anonymized object against attributes of a known object
to discover a mapping between anonymized and unanony-
mized objects.

• Structure Recognition: The act of recognizing struc-
ture between objects to use one mapping to discover mul-
tiple mappings between anonymized and unanonymized
objects.

• Known Mapping: Exploiting the discovery of a map-
ping between unanonymized and anonymized data in one
reference, to undo anonymization of that same data in
multiple places.

• Data Injection: Injecting information to be logged with
the purpose of later recognizing that data in an anony-
mized form.

• Cryptographic: Attacking the cryptographic primitives
that form the basis for anonymization algorithms.

Ten of the nineteen attacks are classified as Fingerprint-
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Figure 1: Grouping of Anonymization Attacks by Pre-conditions

ing attacks. Our original criticism of the Slagell et al clas-
sification was that it was not fine-grained enough to allow
for policy creation that provided a high level of both secu-
rity and utility. Thus, we have attempted to create sub-
classes of the Fingerprinting attack class. We first analyzed
common prerequisites between attacks. However, no sim-
ple approach—as taken to create the major classes—could
be found. Instead, we decided to create subclasses using a
case-by-case approach:

• Attacks #1, #2, #8, and #9 all relied on unanonymized
port numbers (or on being able to extract the port num-
bers from statistical analysis [4]). We chose to call these
attacks Port-based Fingerprinting: Fingerprinting by
network ports or well-known services.

• Attacks #15 and #16, while not sharing any common
pre-conditions, were based on a known machine/user be-
havior, and so we title these Behavioral Fingerprint-
ing: Fingerprinting based on observing an entity’s known
behavior.

• Attacks #18 and #19 were simple to group together, as
both rely on cleartext timestamps. We also decided to
group OS Fingerprinting (#17) in this subclass, though
we will discuss it further below. We call this Machine
Attribute Fingerprinting: Fingerprinting based on (rel-
atively) immutable attributes of a machine, such as hard-
ware timer drift or operating system characteristics.

• Alone in this subclass is attack #14, File Transfer Fin-
gerprinting, which is the only fingerprinting attack in our
sample which attempts to fingerprint something other than
a machine. For this reason, we created a separate sub-
group for it, which we believe can be expanded with other
examples. We titled this class Network Traffic Finger-
printing: Fingerprinting based on recognizing patterns
inherent to network traffic such as known file transfer
sizes.

Figure 2 illustrates the complete taxonomy.
OS Fingerprinting presents a particular problem for our

classification. We feel that OS Fingerprinting is viewed best
not as a single attack, but a group of attacks based on a
post-condition. If we are structuring our taxonomy upon
pre-conditions, though, it is more sensible to split OS Fin-
gerprinting attacks among the other four subclasses—that
is to say, there may be Port-based, Behavioral, Machine
Attribute-based, and Network Traffic-based ways to perform
OS fingerprinting. Thus, to stop all forms of OS fingerprint-
ing, we need to consider each subclass in turn. We leave
these considerations as future work.

2.4 Analysis of Post-conditions
We attempted to analyze attack post-conditions as well.

However, a majority of the attacks we examined (10 of 19)
were specifically aimed at identifying a machine or deanony-
mizing an IP address. The remaining nine attacks each have
a unique attribute that they deanonymize. As most of these
single attack/post-condition pairs seem to be unrelated, and
the remaining attacks all focused on the goal of machine
identification, we determined that post-condition analysis
was not useful for our purposes. A more thorough discus-
sion of our post-condition analysis is available in [6].

3. ADVERSARIAL MODEL
Our model consists of a number of elements, representing

logs, log entities, log entity’ properties and data, the ad-
versary’s knowledge set, patterns, and a collection of four
adversarial means. We will explain each of these elements,
and Section 3.7 will give a thorough example of how these
elements can be combined to describe an adversary’s capa-
bilities.

3.1 Entities
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An entity in our model is any item that an adversary may
wish to discover information about. Example entities could
be machines, users, or files sent over a network. An entity
is essentially synonymous with an object in [3], though we
may wish to discover information about entities that is not
in a log, even when unanonymized. For example, we may
wish to discover a machine’s operating system, even though
there is no such field in most log formats.

Entities have attributes, some of which may be known to
an adversary and some of which may not be known. En-
tity attributes may be anonymized or unanonymized, and
the adversary may wish to discover either form. We will de-
velop notation for anonymized and unanonymized attributes
in section 3.4.

An entity in our model will be denoted as e, with an op-
tional subscript that serves as a way to differentiate enti-
ties. For example, a “target” entity may be denoted as et.
Attributes will be denoted as the entity’s name, followed by
a period and the name of the attribute. For example, the
target entity’s unanonymized IP address may be denoted as
et.ip addr.

3.2 Adversary Knowledge Set
The adversary’s knowledge set is a collection of entities,

and their known attributes. The goal of the adversary is to
uncover an entity’s attributes, and to add them to its knowl-
edge set. Data must be in the adversary’s knowledge set
before it can be used to uncover more information. We
consider adding information to the adversary’s knowledge
set, but we do not believe there is any reason to consider
information loss from this set. We denote the adversary’s
knowledge set using the symbol K , and we denote addition
of information to the adversary’s knowledge set using the
‘⇒’ symbol. For example, e.ip addr ⇒ K means that the
entity’s unanonymized IP address has been added to the ad-
versary’s knowledge set.

The Knows() Assertion
The Knows() assertion lets us state that an adversary knows
a specific piece of information. When used to construct at-
tack specifications, the Knows() will cause an attack to
fail if it is not true, and thus, it is used to specify an at-
tack’s prerequisite knowledge. As an example, the statement
Knows(et.ip addr) asserts that et.ip addr ∈ K , that is, that
the adversary knows the target entity’s unanonymized IP
address.

3.3 Logs

Abbreviation Meaning
CP Consistent Pseudonym
PP Prefix Preserving IP [23]
BM Black Marker [20]
RP Random Permutation [20]

Table 1: Abbreviations for anonymization algo-
rithms and classes of algorithms

Logs are the source of information about entities. When
discussing a particular log, we assume that the adversary has
some form of that log (either anonymized or unanonymized)
in his possession. We will denote logs using the symbol L.
We may occasionally place a subscript after this for the few
attacks in which multiple logs are involved.

3.4 Anonymized/Unanonymized Data
We will denote unanonymized data using an underline no-

tation. For example, an unanonymized IP address may be
denoted as ip addr.

We will denote anonymized data using an overline no-
tation, followed by a backslash, and then an abbreviation
to note what algorithm (or class of algorithms) are used to
anonymize. For example, an IP address anonymized using a
consistent pseudonym algorithm (such as prefix-preserving
IP anonymization [23] or random permutation [20]) may be
denoted as ip addr\CP . A list of abbreviations for use in
this model can be found in Table 1.

3.5 Patterns
Patterns are a way to match information in the adver-

sary’s knowledge set. Because of the large variety of com-
putations matching information can involve, we choose not
to formalize the construction of a pattern besides specifying
its inputs and outputs. However, Coull’s adversarial model
[3] may make a good model for a pattern in many cases of
fingerprinting or structure recognition attacks. While our
model makes use of very unspecified patterns, we view this
as being a powerful construct that can be broadly applied.

Patterns take a set of input attributes, which may be ei-
ther anonymized or unanonymized. The key to these inputs
is that they are pre-conditions, in that the pattern cannot
be matched against if these inputs are not available. For
example, a data injection pattern using unanonymized, ob-
scure TCP options cannot be recognized if those options are
anonymized (especially by a Black Marker algorithm). Like-
wise, a pattern relying on packet sizes cannot be applied to
a NetFlow log, as it does not report individual packets, but



rather, the size of the entire flow between hosts. Thus, if
our goal is to stop the application of a pattern, we simply
need to prevent the adversary from gaining knowledge of the
pattern’s pre-conditions.

Patterns are denoted using the symbol P . We have for-
malized the pre-conditions by listing them in angle brackets
after the name of the pattern. For example, if pattern Pex

has e.ip addr\CP and e.tcp options are prerequisites, then

the full notation will be Pex〈e.ip addr\CP, e.tcp options〉.

3.6 Adversarial Means
Below we consider four “means”, or capabilities, of an ad-

versary in our model. Each of these means is in relation to
an attribute in a record (usually an attribute belonging to
an entity of interest). In combination, these means (along
with the Knows() assertion) can describe any attack. The
‘→’ symbol represents that a means produces a given value.
For example, f(. . .) → g says that the means f , when suc-
cessfully used, produces information g.

3.6.1 The Observe() Means
Form: Observe(L, e.attr) → e.attr

The Observe() means represents knowledge that an adver-
sary can directly learn from a log. This information may
be either anonymized or unanonymized, as it is presented in
the log in question. Observe() cannot directly un-anonymize
data, nor can it infer data not found in the log.

As an example, the act of observing an entity’s IP ad-
dress from a log that has not been anonymized can be rep-
resented as Observe(et.ip addr) → et.ip addr ⇒ K (we note
that some authors have considered this a simple attack [11]).

A second example, involving a port number anonymized
using the black marker algorithm, is very similar:
Observe(et.port num\BM) → et.port num\BM ⇒ K .

3.6.2 The Compromise() Means
Form: Compromise(e.attr\alg) → e.attr

The Compromise() means directly reveals the unanonymized
version of an anonymized attribute, which can then be added
to the adversary’s knowledge set.

An example use of Compromise() is an attack on a cryp-
tographically weak anonymization algorithm, such as a dic-
tionary attack against a hash of IPv4 addresses. There are
only 232 possible addresses (which can be even further con-
strained due to other knowledge available to the adversary),
and constructing a dictionary of these addresses would take
under an hour at the relatively modest rate of 1.2 million
address hashes per second1. This attack can be represented
as Compromise(et.ip addr\MD5) → ip addr ⇒ K .

We do not anticipate that most adversaries will have a
Compromise() ability for most or any attributes and that
it primarily will serve to identify adversaries who can take
advantage of weak anonymization algorithms. The attacks
performed using the Compromise() means will generally be
those we have classified as Cryptographic.

3.6.3 The Inject() Means

1We ran an Openssl benchmark and found that it could
do over 1.2 million md5 hashes per second on a single core
Xeon at 3.00 GHz.

Form: Inject(L, P〈attr1, attr2, attr3, . . .〉) → ∅

The Inject() means injects a pattern (involving attributes
attr1, attr2, attr3, . . .) into a log for later recognition by Mat-
ch(). It must be performed before any Observe(), Compro-
mise(), or Match() can be done to an individual log (as an
injection must happen while the log is being collected, as op-
posed to the post-collection analysis performed by the other
three means). The attacks constructed using an adversary’s
Inject() means directly map to the class of attacks called
“Data Injection” attacks in Section 2.

As an example, consider injecting with a pattern based
upon a particular TCP option. If we can construct a pat-
tern Pinj〈tcp opt〉 using this TCP option, we can denote its
injection to log Lt by Inject(Lt, Pinj〈tcp opt〉).

3.6.4 The Match() Means
Form: Match(e, P〈attr1, attr2, attr3, . . .〉) → e.attr

The Match() means uses a constructed pattern P to reveal
an unknown attribute of entity e. It relies on the parameter
attributes attr1, attr2, attr3, . . ., which may be anonymized
or unanonymized, in finding a match and revealing the new
attribute (which may also be anonymized or unanonymized).
The Match() means is the primary means by which we
expect adversaries to launch attacks.

An example use of Match() can be seen using a contin-
uation of the TCP option pattern injected in our Inject()
means example. If we have an entity es which we are ob-
serving (to see if it is the same as our target entity et that
injected the pattern), we can use the match means as fol-
lows: Match(es, Pinj〈tcp opt〉) → et.ip addr\CP ⇒ K . If
es’s TCP options match the pattern Pinj , then we infer that
es ≡ et, and we then know et’s anonymized IP address.

3.7 Constructing an Example Attack
From the Knows() assertion and the four means in section

3.6, (as well as a set of patterns), we may construct formal
descriptions of various attacks against anonymization. Fig-
ure 3 demonstrates a data injection attack using obscure
TCP options, which we will explore more thoroughly below.
Construction of other attacks is quite similar, and further
examples are available in the appendix, as well as in the
first author’s thesis [6].

The attack given in Figure 3 consists of a single Knows()
assertion, and four means. First, we assert that the adver-
sary must know its own unanonymized IP address (that is,
the IP address of the entity in the log that injects the data).
Second, the adversary must have the means to Inject() a
pattern Pinj using TCP options into the log. Next, after ob-
taining the log, the adversary loops through all the anony-
mized entities. For each entity, the IP address (anonymized
by an algorithm that produces consistent pseudonyms) and
the TCP options used by the entity are observed (Observe()).
Finally, we match the entity against the injected pattern. If
the pattern matches (Match()) the entity we are examin-
ing, we know that the anonymized entity is the same as the
adversary’s entity, and thus we know the adversary’s anony-
mized IP address.

4. MAPPING ADVERSARIES & ATTACKS
Our taxonomy and adversarial model are useful in and of



Knows(eself .ip addr)
Inject(L, Pinj〈eself .tcp options〉)
FOREACH e ∈ L

Observe(L, e.ip addr\CP ) ⇒ K
Observe(L, e.tcp options) ⇒ K
Match(e, Pinj〈eself .tcp options〉) →

eself .ip addr\CP ⇒ K
ENDFOR

Figure 3: Data Injection Attack Construction:
Recover Adversary’s Anonymized IP Address

themselves. However, their interrelationship is the key fea-
ture that lets network dataset owners develop a safe anony-
mization policy. This policy can be derived by hand from
our model, though our other work [6] has shown how policies
safe against a given set of attacks can be derived automati-
cally. Regardless of the method of policy derivation, we seek
to show the relationship between our taxonomy and model
as a way of selecting the threats to anonymization that con-
cern us.

4.1 Mapping adversaries to attacks
An adversary can perpetrate any attack for which it has

the prerequisite knowledge and means. Formally, consider
an adversary χ with a set of means and knowledge Mχ. An
adversary can perpetrate any attack that can be constructed
from the elements of Mχ. In other words, an attack α that
requires means and knowledge µα can be perpetrated by χ
if and only if µα ⊆ Mχ.

Since any attack that can be perpetrated by an adversary
has a means and knowledge set that is a subset of the adver-
sary’s means and knowledge set (that is, µα ⊆ Mχ), we can
explore all possible combinations of the means and knowl-
edge of the adversary to find all attacks possible, given an
adversary. Specifically, since the power set P (Mχ) contains
all subsets of Mχ, we know that every attack that χ can
perpetrate is a member of P (Mχ). In the case that |Mχ|
is finite, we can even enumerate all the elements of P (Mχ),
and thus all of χ’s possible attacks.

However, note that many (if not most) of the elements
of P (Mχ) are not actually attacks. For example, an attack
that does not have at least one Observe() means does not
read any information from a log, and therefore is not an at-
tack on log anonymization. Second, only Compromise() and
Match() actually reveal new information, and thus an attack
must contain at least one Compromise() or Match() means.
Finally, note that patterns, Compromise(), and Match() all
rely on specific information that has been read from a log,
and thus, to construct an attack using any of these, we must
also include their Observe() counterparts. This limits the
set of potential attacks that we can construct. Because of
this, if we call our mapping of adversaries to attacks γ, then
we might say γ(χ) ( P (Mχ).

4.2 Deriving adversaries from attacks
We can also establish a reverse mapping, that is, γ−1

from an attack to the set of adversaries that can perpe-
trate it. While this adversary set will generally be uncount-
ably infinite (as there are an uncountably infinite number
of patterns we may use for a Match()), we can discuss a
minimal adversary that can perpetrate α simply as the ad-

versary with exactly the means and knowledge such that α
can be constructed. Thus, a minimal adversary χmin for
attack α is simply the adversary with means and knowledge
Mχmin = µα.

Given a set of attacks A, we can construct a minimal ad-
versary χmin by simply taking the union of every means and
knowledge set required for the attacks in A, formally,

A ⊆ γ(χmin) ⇐⇒
[

α∈A

µα ≡ Mχmin

Note that A ⊆ γ(χmin). This is because it is entirely possi-
ble for the union of two or more attacks’ prerequisite means
and knowledge sets to combine and allow for an additional
attack. The new attack must have all of its prerequisites
in the union of the original attacks’ means and knowledge
sets. In some cases (for example, attacks #8 and #9 in
our taxonomy), an attack α1 may have a means and knowl-
edge set that is a superset of another attack α2’s means and
knowledge set, that is, µα2 ⊂ µα1 , and in this rare case, the
minimal adversary capable of perpetrating α1 will also be
able to carry out α2. We believe that this will only occur
with highly similar attacks.

4.3 Example Mappings
Consider an adversary χ, who can inject data into a log

as it is being collected, and then recover the log in anony-
mized form. However, assume that the log is anonymized
such that only pseudonyms remain for the IP addresses, and
all other fields except the timestamps and TCP options are
removed. If the adversary is familiar with anonymization
attack literature, he or she may be able to use the attacks
described in some papers to reproduce the methods used for
the attacks. Assume that the adversary knows the target
entity’s unanonymized IP address, clock drift, TCP options,
and operating system. A reasonable representation of χ’s
means and knowledge sets are:

Mχ = {Observe(L, e.ip addr\CP ), Observe(L, r .timestamp)
Observe(L, e.tcp options) Match(e.timestamps[], Ptd),

Match(e.timer drift, Pt〈et.timer drift〉),
Match(e, Pinj〈et.tcp options〉), Inject(L, Ptd),
Inject(L, Pinj〈et.tcp options〉)}

Kχ = {et.ip addr, et.timer drift, et.tcp options, et.os}

By examining Figure 3, we can see that all the necessary
knowledge and means are present to launch the TCP op-
tions injection attack—we call this αinj . We can also see
from Figure 5 that we have the means for Kohno et al ’s
hardware timer drift attack [7], which we call αtim. αinj

and αtim are members of γ(χ), and thus, both are possible
for χ to perpetrate.

Our example χ above is not the minimal adversary that
can perpetrate both attacks: the means Inject(L, Ptd) and
the knowledge et.os are unnecessary for either attack (nei-
ther are present in µαinj or µαtim). However, these extras
may make other attacks possible for χ. For example, it may
be possible to use Inject(L, Ptd) to inject a timing pattern
into the log based on the adversary’s known unique timer
drift.

In order to protect against the attacks that we known χ
can perform, we need to change the anonymization policy,
which changes the available Observe() means. For example,



we could anonymize IP addresses with a black marker algo-
rithm, making traffic from various entities much harder (or
impossible) to distinguish. We could also anonymize times-
tamps and TCP options.

5. RELATED WORK

5.1 Prior Taxonomies
Pang and Paxson [15] were the first to suggest an attack

classification in the domain of log anonymization. They de-
scribed four basic types of attacks. However, these classi-
fications were neither complete nor mutually exclusive [22].
Furthermore, the classifications are too broad. The plethora
of attacks that fall within any one class makes elimination
of all attacks in a class, while feasible, a serious detriment
to the utility of a log.

Slagell et al ’s classification [22] introduces two additional
categories of attacks not considered by Pang and Paxson,
and reorganizes the previous, sometimes-overlapping cate-
gories into three mutually exclusive sets. This reclassifica-
tion addresses the first two problems of Pang and Paxson’s
taxonomy, but it is still too coarse. We require a more fine-
grained taxonomy to useful correlate with our adversarial
model.

5.2 Prior Adversarial Models
Coull et al. recently developed their own adversarial model

in conjunction with an entropy measurement [3]. While this
model is convincing from an information theoretic perspec-
tive, it gives no hard guarantees on specific, known attacks—
even ignoring all active attacks. We view Coull et al.’s model
and the associated metrics as an additional tool that com-
pliments our own adversarial model. An analogous contrast
would be between signature and anomaly based intrusion
detection.

The inspiration for our model comes from Avione’s generic
model for attacking secure RFID tags [1]. Avione’s model
consists of three channels: “forward”,“backward”, and“mem-
ory”. The adversary also has a set of five “means”, or capa-
bilities: Query(), Send(), Execute, Execute*(), and Reveal().
Our model has two (implicit) channels. The Forward chan-
nel is data injected into the log, and the Backward channel is
the log itself. We have no need for an equivalent to the mem-
ory channel. Our means roughly map to theirs as follows:
Query() ⇐⇒ Observe(), Send() ⇐⇒ Inject(), Execute()
⇐⇒ Match(), and Reveal() ⇐⇒ Compromise().

6. CONCLUSIONS AND FUTURE WORK
We have presented a new taxonomy and adversarial model

to describe attacks against network log anonymization. This
taxonomy is the first to explore and classify a large variety of
attacks, and it is the first to classify by a rigorous, empirical
evaluation of attack properties. Our adversarial model is ca-
pable of capturing all currently known anti-anonymization
attacks, and we believe it will be able to incorporate new
attacks as they are discovered. Furthermore, we are able to
map an adversary constructed with a specific means and
knowledge set into a class of potential attacks (and vice
versa).

The impact is to provide a methodology that allows orga-
nizations to create safer anonymization policies for existing
log sanitizers. By allowing data owners to make more in-
formed decisions, they can more easily balance the trade-offs

between utility and trust, thus allowing for more collabora-
tion. Hence, this work compliments our other work in this
area evaluating how anonymization affects utility and devel-
oping a flexible anonymization framework [10, 20].

Like any new taxonomy, its value will only be determined
in the future by those who have found it useful towards their
goals. We have found it useful as it maps so nicely into a first
order predicate logic that can express constraints on what
cannot be anonymized for utility and what must be anony-
mized to prevent specific attacks or classes of attacks [6]. In
the future, we plan on using this predicate logic along with
our anonymization framework to see if they meet specified
utility and trust requirements.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the Na-

tional Science Foundation (NSF) under Award No. CNS
0524643. Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the NSF.

8. APPENDIX

Observe(L, et.ip addr\MD5) ⇒ K
Compromise(et.ip addr\MD5) → et.ip addr ⇒ K

Figure 4: Cryptographic Attack Construction -
Dictionary attack on MD5-hashed IPv4 Addresses

Knows(et.ip addr)
Knows(et.timer drift)
FOREACH e ∈ L

Observe(L, e.ip addr\CP ) ⇒ K
FOREACH record r ∈ e

Observe(L, r .timestamp) → e.timestamps[] ⇒ K
ENDFOR

Match(e.timestamps[], Ptd) → e.timer drift ⇒ K
Match(e.timer drift, Pt〈et.timer drift〉) →

et.ip addr\CP ⇒ K
ENDFOR

Figure 5: Machine Attribute Fingerprinting Attack
Construction - Hardware Timer Drift

Observe(L, et.ip addr\CP ) ⇒ K
FOREACH record r ∈ et

Observe(r .timestamp) ⇒ K
Observe(r .port) ⇒ K
Observe(r .f low size) ⇒ K
Match(r , Psessions〈r .timestamp〉) →

et.sessions[] ⇒ K
ENDFOR

FOREACH session s ∈ entt.sessions[]

Match(s, Pwebsites〈s.port, s.f low sizes〉) →
s.website ⇒ K

ENDFOR

Figure 6: Port-based Fingerprinting Attack Con-
struction: Web Browsing Activity Identification
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